所长信箱   |    信息公开   |    内部办公   |    内部办公(旧)   |    ARP   |   图书馆   |    中国科学院   |    ENGLISH
深海科学与工程研究所
当前位置:首页 > 研究进展 > 2013
2013

Analysis of deep-layer and bottom circulations in the South China Sea based on eight quasi-global ocean model outputs

文章来源:  |  发布时间:2013-06-28  |  【打印】 【关闭

  

作者:Xie Qiang, XIAO JinGen, WANG DongXIao, YU YongQiang

出版物:Chinese Science Bulletin 

DOI: 10.1007/s11434-013-5791-5 出版年份:June 2013

摘要:This study is a preliminary analysis of the South China Sea (SCS) deep circulations using eight quasi-global high-resolution ocean model outputs. The goal is to assess models’ ability to simulate these deep circulations. The analysis reveals that models’ deep temperatures are colder than the observations in the World Ocean Atlas, while most models’ deep salinity values are higher than the observations, indicating models’ deep water is generally colder and saltier than the reality. Moreover, there are long-term trends in both temperature and salinity simulations. The Luzon Strait transport below 1500 m is 0.36 Sv when averaged for all models, smaller compared with the observation, which is about 2.5 Sv. Four assimilated models and one unassimilated (OCCAM) display that the Luzon deep-layer overflow reaches its minimum in spring and its maximum in winter. The vertically integrated streamfunctions below 2400 m from these models show a deep cyclonic circulation in the SCS on a large scale, but the pattern is different from the diagnostic streamfunction from the U.S Navy Generalized Digital Environment Model (GDEM-Version 3.0, GDEMv3). The meridional overturning structure above 1000 m is similar in all models, but the spatial distribution and intensity below 1500 m are quite different from model to model. Moreover, the meridional overturning below 2400 m in these models is weaker than that of the GDEMv3, which indicates a deep vertical mixing process in these models is biased weak. Based on the above evaluation, this paper discusses the impacts of T/S initial value, topography, and mixing scheme on the SCS deep circulations, which may provide a reference for future model improvement.

谢强:博士,研究员。1999年于中国科学院海洋研究所物理海洋专业获得博士学位。从事海洋环流(包括上层环流和深海环流)和海-陆-气相互作用等研究工作。

Copyright?中国科学院深海科学与工程研究所 备案证号:琼ICP备13001552号-1   琼公网安备 46020102000014号
地址: 三亚市鹿回头路28号 邮编:572000 网站维护:深海所办公室   邮箱:office@idsse.ac.cn