论文题目 | Black-Box Modelling and Prediction of Deep-Sea Landing Vehicles Based on Optimised Support Vector Regression |
论文题目(英文) | Black-Box Modelling and Prediction of Deep-Sea Landing Vehicles Based on Optimised Support Vector Regression |
作者 | 孙洪鸣;郭威;Lan, Yanjun;魏振卓;Gao, Sen;Sun, Yu;Fu, Yifan |
发表年度 | 2022-05-01 |
卷 | 10 |
期 | 5 |
页码 | 19 |
期刊名称 | JOURNAL OF MARINE SCIENCE AND ENGINEERING |
摘要 | |
摘要_英文 |
Due to the nonlinearity of the deep-seafloor and complexity of the hydrodynamic force of novel structure platforms, realising an accurate motion mechanism modelling of a deep-sea landing vehicle (DSLV) is difficult. The support vector regression (SVR) model optimised through particle swarm optimisation (PSO) was used to complete the black-box motion modelling and vehicle prediction. In this study, first, the prototype and system composition of the DSLV were proposed, and subsequently, the high-dimensional nonlinear mapping relationship between the motion state and the driving forces was constructed using the SVR of radial basis function. The high-precision model parameter combination was obtained using PSO, and, subsequently, the black-box modelling and prediction of the vehicle were realised. Finally, the effectiveness of the method was verified through multi-body dynamics simulation and scaled test prototype data. The experimental results confirmed that the proposed PSO-SVR model could establish an accurate motion model of the vehicle, and provided a high-precision motion state prediction. Furthermore, with less calculation, the proposed method can reliably apply the model prediction results to the intelligent behaviour control and planning of the vehicle, accelerate the development progress of the prototype, and minimise the economic cost of the research and development process. |
Copyright © 中国科学院深海科学与工程研究所 备案证号:琼ICP备13001552号-1
琼公网安备 46020102000014号
地址: 三亚市鹿回头路28号 邮编:572000 网站维护:深海所办公室 邮箱:office@idsse.ac.cn